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SUMMARY

An equivalent circuit model (ECM) approach is used to predict the scattering

behavior of temperature-activated, electrically lossy dielectric layers. The total

electrical response of the dielectric (relaxation + conductive) is given by the ECM

and used in combination with transmission line theory to compute reflectance spectra

for a Dallenbach layer configuration. The effects of thermally-activated relaxation

processes on the scattering properties is discussed. Also, the effect of relaxation

and conduction activation energy on the electrical properties of the dielectrical

properties of the dielectric is described.

INTRODUCTION

Scattering of high-frequency electromagnetic fields from dielectric surfaces ks

a phenomenon of interest in the design of many microwave and millimeter wave systems.

A wealth of information on reflection analysis and absorber design is available in

the literature dating back to the 1950's; however, very little information on the

relationship of the temperature dependent properties of dielectrics on their high-

frequency scattering behavior currently exists. In this paper, a model for the

thermally activated scattering response of a dielectric Dallenbach layer configura-

tion is given. The model is based on the thermally-activated, total electrical

response of a conductive dielectric as represented by an equivalent electrical cir-

cuit containing both discrete and distributed elements.

DIELECTRIC RELAXATION THEORY

In order to predict the scattering of electromagnetic fields from dielectrics,

the electrical response of the bulk dielectric to a time-varying field must first be

defined. This involves an analysis of both the system's dielectric and conductive

properties.

The complex permittivity of a dielectric containing mobile charge carriers is

given by the relationship,

8" = [(_s - _w)l(l + (iWT) l'a) + ew] - iaDc/W. (1)

The first term is the dielectric function given by Cole and Cole (ref. i) where

_ and im are the static and high-frequency limiting permittivities, T is the
mean dielectric relaxation time, i is equal to _ and indicates an imaginary quan-

tity, W is the angular frequency and G is a parameter describing the shape of the

relaxation spectra. For the limiting case of G = 0, the Cole-Cole function simply



reduces to the Debye model. The second term represents the loss resulting from the

dc conductivity of the dielectric. The dc conductivity results from the long-range

migration of the charge-carrying species and is frequency independent. Figure 1

shows a comparison of loss spectra for a Debye model dielectric with two spectra

generated with the Cole-Cole function for different values of G. It can be seen

that as the value of _ increases, the width of the spectral profile broadens. This

broadening effect has been interpreted as a result of a distribution of relaxation

times (refs. 2 and 3) associated with charge carrier-vacancy re-orientation and is

typically observed in real conductive dielectric systems (refs. 4 and 5).

Both Y and GDC typically exhibit Arrhenius type thermally activated behavior

(ref. 6), which may be expressed as,

-E/kBT
- G e (2)GDC o

and,

E/kBT

T = T e . (3)
O

and T are pre-exponential factors, E is the activation energy forHere, a ° o

charge carrier migration and relaxation, kB is the Boltzman constant, and T is the

absolute temperature. We will assume that the activation energies are equal for the

conduction and relaxation processes and the validity of this assumption will be dis-

cussed in the next section.

The total dielectric response of the conductive dielectric system may be modeled

using the equivalent circuit shown in figure 2. The complex admittance of this cir-

cuit is given by,

Y*(W,T) = I/R(T) + iWC w + i/[I/(iw _C) + ZcpE(W,T)] (4)

= - = is the permittivity of freewhere Cw sw¢ o, 6C = (s sm)e o, R(T) I/GDC and _o

space. Zcp E is a special function known as the "constant phase element" (CPE) whose

name is derived from the fact that the phase angle of its response has a characteris-

tic constant value of GW/2. The CPE is a useful mathematical device for simulating

non-Debye relaxation processes which are believed to result from relaxation time dis-

tributions previously mentioned (ref. 7). In terms of the equivalent circuit model

(ECM), the CPE is a distributed circuit element and may be described as a frequency-

dependant capacitor. The expression for the CPE is,

ZcpE = A(iW) -a (5a)

where

A = ro1-'/[(S, - ge )Io]" (Sb)

The ECM provides a practical method for modeling the bulk response of dispersive

dielectrics and their thermally-activated behavior. Assuming no crystallographic or

microstructural changes occur for a given material, the electrical response may be

predicted quite accurately for a wide temperature range over several decades in fre-

quency. Based on this property, the bulk response model may be used in combination

with transmission line theory to predict the scattering behavior of layer

configurations.



SCATTERING THEORY

Using the ECM, normal incidence scattering from a Dallenbach design (ref. 8)

dielectric system will be considered. The configuration consists of an electrically

homogeneous, lossy dielectric layer backed by a highly conductive surface. This

design is used commonly with thin layer systems to facilitate absorption of microwave

fields by resonant cancellation (ref. 8).

In order for resonant cancellation of an electromagnetic field to occur in a

Dallenbach system, a phase shift must occur as the transmitted component of the field

traverses the thickness of the layer, reflects off of the conductive ground plane,

and reemerges at the surface of the layer. Electrical losses, _' and the physical

thickness of the bulk dielectric are responsible for the phase shift which, under the

proper conditions, allow the reemergent field components to destructively interfere

with components reflected solely at the front surface of the dielectric. The result

of this phenomenon is a minimum in the total reflected energy, from the surface for a

layer having an electrical thickness, defined as d - [¢" "'_ ] x (physical thick-

ness), equal to an odd multiple of a quarter-wavelength with respect to the incident

field.

Scattering from a Dallenbach design may be predicted by transmission line

theory (ref. 8). This analysis is accomplished by defining the bulk complex

constitutive properties of the layer, 8 and _, and the thickness of the layer.

intrinsic impedance of the layer is given by,

where

given by,

The

z - l_l,]_ (6)

is the complex permeability of the layer. The complex wavenumber, k, is

k= wlc[,9} _

Using these quantities the effective input impedance, p, may be determined by,

(7)

p - iZ tan(kd) (8)

where d is the physical thickness of the layer. The voltage reflection coefficient

may be computed by the relationship,

r - (p - l)/<p + i). (9)

Obviously, r is a complex quantity containing both amplitude and phase information;

however, the magnitude, I FI, will be sufficient for this model.

At this point, the mathematical aspects of the model have been fully described.

In the next section, reflectance spectra generated by the model will be presented and

examined in terms of calculated, thermally-activated properties of a hypothetical

dielectric layer.

MODELING RESULTS

In order to present a generalized description of the temperature-activated

electrical response and to limit the large number of possible results, a number of

simplifying constraints and assumptions associated with the ECM have been made. It



should be noted that although the assumptions are used in the case presented here,

there is no reason why they must be applied to other cases.

It is assumed in this model that the thermally-activated dielectric and conduc-

tive properties are controlled exclusively by the quantity, E/kBT. In order to gen-

eralize the model, the normalized energy function, @, will be defined as @ - E/kBT-

Also, the constraint E Tio, = EDc will be applied. The validity of this action
is based on a large bodym_oexperimental data and has been reviewed by Tomazawa

(ref. 9). Since different combinations of E and kBT will yield the same value of

8, and hence identical reflectance spectra, the thermally activated effects will

first be described in terms of 8 in order to avoid this ambiguity. Later in this

section, a set of reflectance spectra will be presented for various values of E at

different temperatures. Although less general innature, these curves may provide a

more practical assessment of the predictions. Lastly, it is assumed that the layer

is nonmagnetic; therefore, _ = 1.

Table I contains the parameters used to calculate the reflection spectra pre-

sented in this section. The values selected for these parameters were chosen from

ranges consistent with real dispersive oxide conductors. Since a wide variety of

responses may be computed based on the various combinations of parameters, only one

case will be presented which will illustrate typical thermally activated behavior.

In order to fully understand the calculated reflectance spectra we must first

examine the predicted temperature-dependent bulk properties based on the ECM pre-

sented earlier. Variations in the real component of the permittivity with 8 are

illustrated in figure 3. It can be seen that as 8 decreases an increase in 8' is

predicted over the frequency space where relaxation occurs. In the high and low

' limiting values. It should befrequency regions, e approaches the zW and _

noted that frequency superposition may be applied to these spectra where one curve

can be perfectly superimposed on another by a translation in frequency space. The

amount of frequency translation necessary depends on the difference in the respective

8 values.

Figures 4(a), (b), and (c) show the loss spectra for 8 values of 9.5, 7.5, and

5.5, respectively. A full logarithmic scale was used in order to give a better com-

parison for the different values of 8. At the lower frequency values, loss due to

the dc conduction process is observed to be the predominant loss mechanism. As the

frequecy increases a cross-over point occurs where relaxation losses become more

dominant; however, the total loss of the system rapidly diminishes. This effect is

seen to be most pronounced for the dc component. As 8 decreases, the cross-over

point moves higher in frequency resulting primarily from an increase in s_. In the

logarithmic representation of the loss spectra, a linear relationship holds for 8De
with frequency and is given by,

log(sD¢'') - Iog(aDC ) - log(W).

Therefore, the increase in the dc component of the loss is exclusively due to an

increase in G c" It should be noted that for @ _ 6, the lower frequency losses
become extremely high and are composed primarily of the dc component.

(I0)

The semi-logarithmic representation of the relaxation loss spectra shown in

figure 5(a) reveal the shift in the position of the loss maxima in frequency space

for different values of @. The relationship of the positions of the loss maxima

with the energy function, @, is illustrated in figure 5(b). Here, the Arrhenius



behavior of the relaxation process, given by equation (3), is observed. An important
point to note is that unlike the dc conduction losses, the integrated loss due to
relaxation remains constant, regardless of the value of @. The magnitude of the
relaxation loss generally depends on the relaxation strength, (B - 8_) and to a
lesser extent on G.

We now turn to examine the reflection spectra which were calculated based on the

bulk properties predicted by the ECM. In figure 6, reflection spectra calculated for

five values of 8 are shown. On inspection, two trends are observed. For the first

trend, we see that as 8 decreases from the value of 9.5 to 8.5, the reflection min-

imum becomes deeper. This indicates that a more optimum interference condition is

occurring for this particular combination of layer thickness and electrical loss. As

8 decreases below 8.5 the interference condition begins to move away from optimum.

The second effect observed i8 the shift in the reflection minima to lower fre-

quencies with decreasing 8. This effect is a result of an increase in the electri-

cal thickness, which, in turn is due to an increase in 8' This increase in e'

was discussed earlier in relation to figure 3. As expected, the reflectance

increases significantly as 8 continues to decrease, which results directly from the

rapidly increasing dc conduction losses as illustrated in figure 4.

In the next set of reflectance spectra, the effects of activation energy and

temperature have been separated. These spectra are presented in the context that the

different activation energies represent different layer materials. Although a sim-

plifying assumption has been made that the remaining parameters are the same for the

different hypothetical materials, this should not seriously endanger the validity of

the illustration.

The effect of temperature on the scattering behavior of layers having three dif-

ferent activation energies are shown in figure 7. For layer A (fig. 7(a)}, we see an

approach to the optimum interference condition with increasing temperature, which is

expected to be achieved for a temperature slightly higher than 1200 °C. For layer B

(fig. 7(b)}, the optimum condition occurs at a much lower temperature due to the

lower value of E for the material. In conhrast to layer A, it can be seen that the

temperature at which the optimum interference condition occurs for layer C

(fig. 7(c)) falls well below the temperature range selected for this calculation.

These results simply illustrate that the electrical losses required for resonant

cancellation are achieved at lower temperatures for materials with lower conduction

activation energies. It should also be noted that the shift of the reflection minima

to lower frequencies becomes more pronounced for lower activation energies. This

effect would be more apparent for cases where the activation energies for relaxation

and dc conduction were independent. As discussed previously, the shift is directly

related to an increase in s' with decreasing values of the energy function.

CONCLUSIONS

A model which illustrates the effect of thermally-activated losses on the

scattering behavior of dielectric layers has been presented. The model provides a

method for predicting how various temperature-dependent dielectric and conductive

properties affect the reflection of high-frequency fields from layer geometries.

Applications to be considered for the model may include dielectric absorber and

resonator design for high-temperature environments.



The crux of this discussion has primarily consisted of two points; (i) the

thermal dependence of 8' and its resulting effect on the position of the reflection

minima and (2) the effect of the total electrical loss on the interference condition.

Also, in terms of the energy function, the losses required for resonant cancellation

occur at much lower temperatures for lower activation energy materials.

It should be noted that there are other classes of non-Debye model dielectrics

whose responses deviate somewhat from single, dispersive, "CPE" type behavior pre-

sented here. In some cases, the electrical response may be represented by an equi-

valent circuit consisting of two parallel CPE's, known as the Joncher response

(ref. i0). Other more sophisticated models which have been used to analyze the

response of conductive dielectrics containing two power-law regions include the frac-

tal cluster model established by Dissado and Hill (ref. 12). The scattering behavior

for dielectrics based on these models may be considerably different than that of the

single CPE model. Currently, work is in progress in this laboratory on expanding the

model presented in this paper to include other dielectric response formalisms.
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TABLE I.

[The following parameter val-

ues were used to generate

the reflectance spectra.]

8 = 50
B

8 = 6

ff = O. 333

d = 0.154 cm

8 = 9.5, 8.5, 7.5, 6.5, 5.5
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FigureI,--Comparison oflhelossspectraofa Debye model
dielectricwiththe Cole-Colemodel fordifferentvaluesofo.
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Figure 2---Equivalent circuit with "constant
phase element" for a conductive dielec_c.
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